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Ludwig Boltzmann, who spent much of his life studying Statistical Mechanics, died in 1906, by his
own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study
Statistical Mechanics.

D. L. Goodstein
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1 Thermodynamics in one phrase and goal of statistical physics
Thermodynamics. In the macroscopic world one knows that, for a system with fixed energy,
volume, and number of bodies, E, V,N , respectively, there is a function (a thermodynamic poten-
tial), S(E, V,N), the entropy, whose derivatives provide the functions temperature, pressure and
chemical potential: dS = T dE + P dV + µdN , all of them functions of (E, V,N). In different
ensembles, when T, V,N or T, P,N or T, P, µ, or other combinations are fixed, the quantities that
are not fixed are functions of those that are fixed (E(T, V,N) for example) and can be obtained as
the derivatives of the corresponding thermodynamic potential, in its turn obtained from S by the
corresponding Legendre1 transformations:

E, V,N S T dS = dE + P dV + µdN (1.1)
T, V,N F = E − TS dF = −S dT − P dV + µdN (1.2)
T, P,N G = F + PV dG = −S dT + V dP + µdN (1.3)

and so on.
The thermodynamic potentials cannot be any function. They are different for different physical

systems, but for any system they are subject to some conditions reflecting the thermodynamic
equilibrium of the system they represent: these conditions are extremmum conditions with respect
to the introduction (or release) of constraints in the system. In the E, V,N (microcanonical)
ensemble, if one divides the system into two subparts which can exchange volume V = V1 +V2 (by
a free piston), modifying the position of the piston and changing the volume V1 with respect to its
most probable value (i.e., that with the piston let free) will lower the corresponding microcanonical
entropy. Mutatis mutandis for E and N . In the microcanonical ensemble, hence, S is a maximum
with respect to the removal of constraints. This translates (check it!) into the stability conditions
in the microcanonical ensemble:

(∂Eβ)V < 0 (∂V P )E < 0 (1.4)

Throught the Legendre transformations (1.3) one can deduce the stability conditions in different
ensambles. The thermodynamic potential of each of them can be either a maximum of a minimum
with respect to the removal of internal constraints.

1Remember, f is the Legendre transformation of e if f(t) = e(s∗(t))− ts∗(t) where s∗ is such that e′(s∗(t)) = t.
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Aim of statistical mechanics. One would like to calculate the thermodynamic functions and
potentials in different ensembles (which are functional relations between macroscopic quantities,
as P (T, V,N)), provided the details of the interaction energy between the (many) microscopic
bodies composing the system. The microscopic interaction is described by the pairwise interaction
energy between two bodies, H1[σ(1), σ(2)], from which one constructs the Hamiltonian H[σ] =∑

1<i<j<N H1[σ(i), σ(j)], describing the total interaction energy of the configuration σ = ⊗jσ(j)

In other words, the Hamiltonian is a functional over the phase space Σ = {σ} (say, in a gas, the
set of all positions and momenta of all the particles) of microscopic degrees of freedom composing
the macroscopic system.

Along the way, statistical mechanic techniques may provide or estimate a probability measure,
pEVN (say), in the phase space, so that it may be possible to compute expectation values of
different functionals (as correlators) A : Σ→ R, as 〈A〉EVN , where 〈·〉EVN is performed according
to pEVN .

Generality. Pressure, volume and chemical potential are quantities relevant in the description
of a fluid, but all this is general, valid for any kind of thermodynamic variable. For a magnetic
system, all the reasonings above and below remain valid with the substitution:

m↔ v h↔ −P (1.5)

where m is the magnetization and h is the magnetic field.

2 Statistical ensembles in a nutshell
Microcanonical ensemble. Consider a system with fixed energy, volume, and mass (numer of
particles) given by E, V , N respectively (from now on we will suppose constant the number of
particles N). The microcanonical ensemble is given by a probability measure on the microstates
Σ, such that all states with a given energy are equiprobable:

pE,V,N (σ) =
δ(H[σ]− E)

Ω(E, V,N)
, Ω(E, V,N) =

∑
σ∈VV,N

δ(H[σ]− E) (2.1)

where Ω(E, V,N) is the microcanonical partition function normalizing the probability density, or
the number of microstates σ with N particles, enclosed in a volume V satisfying the constraint
H[σ] = E.2 The microcanonical entropy and inverse temperature β = 1/T are defined as:

Sm(E, V,N) = ln Ω(E, V,N), β(E, V,N) = ∂E′Sm(E′, V,N)|E (2.2)

Statistical physics identifies the (E, V,N)-ensemble thermodynamic potential S appearing in
1.3 with the function Sm defined in the precedent equation, linking in this way the microscopic
to the macroscopic. Why so? Suppose that there is free piston letting the volume of a spatial
partition, 1, of our system to be V1 ≡ N1v1 (the reasoning is identical for E, N). Ommitting
the E, N dependence, it is: Ω =

´
dv1 exp(N(s1(v1) + s2(v − v1))), where N1s1 is the function

S corresponding to subsystem 1 and so with 2. For large N , this function is very peaked on the
maximum, let us call it v∗1 of the exponent, let us call it s(v; v1) = s1(v1) + s2(v − v1). Sm is,
hence, an extensive function, maximum with respect to “internal constraints”, and can be identified
with the thermodynamic entropy defined in the last section (up to a (Boltzmann) constant). The
maximum of the microcanonical entropy (2.2) signifies that the value of the internal constraints
is the most probable one, i.e., is such that the number of microstates, exp[Ns(v; v∗1)], compatible
with the value v∗1 is maximum. The most probable value is exponentially much more probable
than the rest, being N the coefficient in the exponential. 3

2The sum over microstates is symbolic, and it is to be regularized (quantum-mechanically) in the case of contin-
uous degrees of freedom.

3 We have introduced the intensive entropy s = S/N . An implicit assumption is that, for sufficiently large N , the
quantity S(E, V,N)/N do not depend on N , a fact which is guaranteed if the Hamiltonian meets some requirements.
In this circumstance we define:

S(E, V,N) = N s(ε, v) ε = E/N v = V/N (2.3)
and the same for the potentials F = fN and G = gN . In other ensembles, we do the same with the extensive
functions (for example, ε(T, v) = E(T, V,N)/N).
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Canonical ensemble. Consider two systems 1 + 2 in the microcanonical ensemble at energy
E12 = E1+E2, E1 being much lower than E2. Supposing also that they are short-range interacting
so that their partition functions can be factorised, it is (we ommit the V , N dependence, indicating
Ω(E1, V1, N1) by Ω1(E1)):

Ω(E) =

ˆ
dE1 Ω1(E1)Ω2(E2) = (2.4)

Ω2(E)

ˆ
dE1 Ω1(E1)e−βE1 = Ω2(E)

∑
σ∈V1

e−βH[σ] (2.5)

where we have Taylor expanded to first order in E1, where β ≡ ∂ESm(E)|E12 and where the
sum is over the N1 degrees of freedom belonging to the first partition V1 ⊂ Σ (with volume V1).
The last factor of (2.5), depending only on subsystem 1, is the canonical partition function of 1,
characterizing it (the whole dependence on the reservoire is in β, Ω(E) = Ω2(E)Z(β, V1, N1)):

Z(β, V1, N1) =

ˆ
dE1 Ω1(E1, V1, N1)e−βE1 =

∑
σ∈V1

e−βHN [σ] (2.6)

we have restored the V , N dependence and used the definition of Ω, (2.7). Each term of Z is
proportional to the canonical probability density of configuration σ:

pβ,V,N (σ) =
e−βH[σ]

Z(β, V,N)
(2.7)

For large N , the sum on E1 in 2.6 is dominated by the saddle point contribution (see the
footnote 3):

Z(β, V,N) = e−βNf(β,v) largeN (2.8)

where

f(β, v) = min
ε
φ(ε, β, v) (2.9)

φ(ε, β, v) = ε− Tsm(ε, v) (2.10)

the last quantity being the free energy functional. Reasoning as in the precedent paragraph when
we discussed the microcanonical ensemble, one concludes that the function f appearing in 2.9 can
be identified with the thermodynamic (per particle) free energy, F/N appearing in 1.3, which is
the thermodynamic potential of the T, V,N ensemble:

βF (β, V,N) = − lnZ(β, V,N) (2.11)

The minimisation in 2.9 shows that β = ∂εsm or, in other words, the β appearing in 2.9 is the same
of the microcanonical ensemble. Since β and f in 2.9 coincide with their respective thermodynamic
quantities, we recognize in 2.9 the Legendre transform that links F and S, f = ε− Ts, and hence
we can identify the thermodynamic function ε(β, v) = arg maxε′ φ(ε, β, v).

Using the relation (2.11), and (1.3), one can relate to Z all the thermodynamic variables as
a function of (β, V,N). We begin by S = −∂TF . Using 2.11 one obtains S = −βF + 〈H〉β,V ,
where the average 〈·〉β,v is with respect to the distribution 2.7. Since F = E − TS, we obtain that
ε(β, v) = 〈H〉β,v/N . Summarizing, the thermodynamic variables are obtained from the ensemble
averages as:

ε(β, v) = arg max
ε′
{ε′ − (1/β)sm(ε′)} = 〈H〉β,v/N (2.12)

s(β, v) = sm(ε(β, v)) (2.13)

The (per-particle) specific heat c(β, v) = −β2∂βε(β, v) turns out to be (check it!)

c(β, v) = β2N1/2[〈ε2〉β,v − 〈ε〉2β,v] (2.14)
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from which one learns that the fluctuations of the energy per site decreases as N−1/2 (since the
left-hand side is intensive, i.e., of order zero in N). This also happens (check it!) with fluctuations
in v.

Isothermal-isobaric ensemble. Proceeding as in the two precedent paragraphs, consider the
system divided into two subsystems whose (intensive) volumes assume the values v1, v − v1 � v1,
respectively. Proceeding as before, the canonical partition function of the composite system results
to be:

Z(β, V,N) = Z1(β, V1, N1) Θ(β, P,N1) (2.15)

where Θ is the partition function of the isothermal-isobaric ensemble:

Θ(β, P,N) =

ˆ
dv Z(β,Nv,N)e−βNPv (2.16)

in the large-N limit, it is

Θ(β, P,N) = e−βNg(β,P ) largeN (2.17)

where
g(β, P ) = min

v
[f(β, v) + Pv] (2.18)

such a minimization remember us that P = −∂vF , and consequently that g is indeed the (intensive)
Gibbs potential G/N :

− βG(β, P,N) = ln Θ(β, P,N) (2.19)

If one knows the function Θ, using the relation (2.19) and the thermodynamic relations (1.3),
one can compute the expectation value of thermodynamic quantities.

Equivalence of ensembles. In the T, V ensemble one can compute P (T, V ) = −∂V F , and in
the T, P ensemble, one can compute V (T, P ) = −∂PG, where G(T, P ) = F + PV , and P (T, V )
is indeed the inverse function of V (T, P ) at constant temperature. Under suitable conditions to
be met by the interaction, and in the limit of large N , the equivalence holds also in statistical
physics: if one manages to calculate F as βF = − lnZ and G as βG = − ln Θ, then G is the
Legendre transform of F , G = F + PV , and the resulting thermodynamic relations (say, P (T, V )
and V (T, P )) are equivalent. One can, hence, choose the most suitable ensemble in the ensemble
calculation.
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