
Fourth lesson: Recursivity. The merge-sorting algorithm. Complexity of sorting algorithms.

Recursivity is a programming technique such that a function calls itself.

For example, the following function prints the first 'aux' natural numbers.

def stampa(i):
if i == 0:

return 
stampa(i-1)
print i

(please note the difference in the function output when inverting the order of the two last 
lines of the function).

EX0. Write recursive functions performing the following operations: computes the factorial 
of a given number; prints all the Fibonacci numbers lower than its argument; checks whether 
the input number is prime.

As a further application of recursivity we propose the recursive solution of the merge-sort 
algorithm for sorting a list. 
It is based on the following strategy, that we illustrate with the list [8,5,7,3,2,1,0]:

A) split a list in elements and merge them in two-lengthed lists so that they are in 
order: [5,8] , [3,7] , [1,2] , [0] 

B) merge the lists in couples forming a larger list from each couple of lists. The 
merging is done beginning from the leftmost element of each list, so that the merged list is in 
order (one cancels the lower element of one of the lists, and continues comparing the left-
most elements): [3,5,7,8] , [0,1,2]

C) repeat recursively such an ordered merging of lists: [0,1,2,3,7,8]

The merge-sort algorithm complexity in time is of order n log(n) in the worst, average and 
best cases (n being the list length). 

EX1. Write a Python module containing a (top-bottom) implementation of the merge-sort 
algorithm. The module may consist in two functions, one which merges two list in order: the 
second splits the original list in two halves, calling itself with each one of the halves as 
argument, then merging the resulting list. Notice that the recursive self-call should be done 
before merging them (top-bottom implementation).

In the python notebook 'timeTestSortFunctions.ipynb' we provide a framework to estimate 
the computational complexity of several sorting algorithms. 




