
Second lesson: Operating systems. Linux.

Compilation vs. interpretation.

>>A computer program in the form of a human-readable, computer programming language is
called source code. Source code may be converted into an executable image by a compiler or
executed immediately with the aid of an interpreter.

Compilers are used to translate source code from a programming language into either object
code or machine code.[19] Object code needs further processing to become machine code, and
machine code consists of the central processing unit's native instructions, ready for execution.
Compiled computer programs are commonly referred to as executables, binary images, or
simply as binaries – a reference to the binary file format used to store the executable code.

Interpreters are used to execute source code from a programming language line-by-line. The
interpreter decodes each statement and performs its behaviour. One advantage of interpreters
is that they can easily be extended to an interactive session. The programmer is presented
with a prompt, and individual lines of code are typed in and performed immediately.

The main disadvantage of interpreters is computer programs run slower than when compiled.
Interpreting code is slower because the interpreter must decode each statement and then
perform it. However, software development may be faster using an interpreter because testing
is immediate when the compiling step is omitted. Another disadvantage of interpreters is an
interpreter must be present on the executing computer. By contrast, compiled computer
programs need no compiler present during execution.

One common scripting language is Unix shell, and its executing environment is called the
command-line interface.

No properties of a programming language require it to be exclusively compiled or exclusively
interpreted. The categorization usually reflects the most popular method of language
execution. For example, Java is thought of as an interpreted language and C a compiled
language, despite the existence of Java compilers and C interpreters.

*

#############################
very basic, example-based overview to Python (2) types and expressions
2nd lesson of the course 'Sistemi Operativi', Laurea Triennale in Matematica
Universita' di Roma, "La Sapienza"
academic year 2017-2018
miguel.berganza@roma1.infn.it
#############################

variable assignement and logical equality
######################################

a=3
a==3

https://en.wikipedia.org/wiki/Human-readable
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Computer_program#cite_note-19
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/REPL
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Command-line_interface

a+=1
a is 3
a > 10 or a is 4

printing strings and variables with 'print'
######################################

print a, b, 'this is a string'
it prints strings (formatted), and it also admits the

C-style formatting:
print("%d %e %.3f \n" % (a,b,c))

Module import examples
######################################

import matplotlib.pyplot as plt
import numpy as np
from numpy import zeros
import random as rnd
from random import random

rnd.random()

#if the module has changed in the meanwhile:
reload(modulename)

Whitespace formatting
######################################
for i in range(4):

for j in range(i):
print i,j

print ''

Lists
######################################
lista=range(10) #it works also range(min,max)
len(lista)
sum(lista)

slice syntaxis:
lista[-1]
lista[1:-1]
lista[-3:]

#slice assignment can change its length:

lista[:]=[]

#membership
lista.append(17)
17 in lista

#concatenating lists:
lista.extend([4, 5, 6])

#one uses also '+'
lista+lista #and also '*' between lists and integers
#note the difference with 'append':
lista.append([4, 5, 6]) # (an example of list nesting) c.f.
lista[-1]

#an exercise: write a Python code that prints the elements of a list in the format 'index
listelement'

#two alternatives to this the first is using 'in':
i=0
for elemento in lista:

print i elemento
i+=1

#very important: assignment in lists
lista=range(4)
lista2=lista
lista.extend([4]) #what happens to lista2? and what if now
you do lista2=lista[:]
#indeed, lista[:] is a copy of 'lista', that may be used to iterate over members of a list to be
modified

lista=['a','ab','abc']
for w in lista[:]:
 if len(w) > 2:

lista.append(w)

#sorting a list:
sorted(['a','c','b'])
list.sort()

#for more operations on Lists, see 'https://docs.python.org' chapter 5. the most important are:
insert pop remove index sort

Functions
######################################
def somma(a=4,b=3):

return a+b

def applytoone(f):
return f(1)

Tuples: with () or without. they are unmutable lists.
######################################
mytuple = 'a','b','c'

def funzione(a,b):
return a*b , a/b

mytuple=funzione(10,20) #OCCHIO: why is the result this way
(beware the types)?

x,y = mytuple

x,y = y,x # "pythonic" variable swapping

Loops and conditionals
######################################
x=0
while x < 10:

print x, " is less than 10"
x+=1

for x in range(10):
if x==3:

continue # go immediately to the next iteration
if x==5:

break # quit the loop entirely
print x

List (and set) construction (they are called 'comprenhensions')
######################################
lista = [1.*lista[i] for i in range(len(lista))]
lista = [1.*i for i in lista] #much easier

[x**2 for x in range(15) if x % 2 == 0]

[[i,j] for i in range(4) for j in range(i)] #they are executed
in inverse order

Strings
######################################

#some syntax conventions
mystring='this is \n a 2-line string with \t a tab space'

#string concatenation
print 'T'+mystring[1:]
#finding a substring
'this' in mystring or 'Miguel' in mystring

#splitting a string (and returning a list)
mystring.split(' ')

#initializing a string
nuovastringa=''

#Preliminar exercises:
######################################

#EX0a. Write a function that returns a list that contains only the elements that are
common between two input lists (the output should not present element repetition).

#EX0b. Write a 10x10 matrix with elements aij=i-j. Write a 1-line comprehension
that transpose a general MxN matrix. Write a function that transposes a general non-square
matrix (in a 1-line comprenhension) taken as argument.

#EX0c. Flatten (eliminate inter-parenthesys []) the vector vec = [[1,2,3], [4,5,6],
[7,8,9]] with a one-line comprenhension

#EX0d. Write a Python function receiving a string and printing the string with the
words in alphabetic order.

#EX0e. Write a Python function that receives (as argument) a given integer (up to
five, otherwise it prints an error message -in Napoletan dialect-) and prints its name. Write a
different function returning the name of the rest of the division by 10 (if it is <=5) of a given
input integer.

#EX0f. Write a Python function receiving a list of numbers and returning a list of the
outputs of the function in EX0e. Test it with a list of 25 random numbers.

#EX0g. Write a Python function ordering a list (without using the 'sroted' function).
Do it with and without the list function 'insert' (see the script 'ordinalista.py' for some
solutions).
######################################

basic I/O
######################################
#opening and closing files
myfile=open(filename,mode)
#mode: 'r' read, 'w' write, 'a' append, 'r+' read and write

#closing a file:
myfile.close()

#a conditional:
myfile.closed()

#reading and writing:
myfile.read() #reading the entire file and putting it
into a string
myfile.readline() #as you expect
myfile.write(string) #writing the string 'string'. write()
works similarly as in C for writing variables. For instance:
myfile.write('miei valori = %f %d %.12e \n' % (a1,a2,a3))

#reading a file line-by-line (i.e. one line at once)
for riga in myfile:

print riga

#asking the user for an input:
cena=input('cosa vuoi per cena?: ')

#basic random numbers
######################################
import random
random.random() #returns a uniformly distributed
random number between 0. and 1.
random.seed(myseed) #idem, with a given seed (the result
depends on 'myseed' only

######################################
#Some exercises
######################################

#EX1. Develop a function that prints a Fibonacci series up to the n-th number. Idem but
returning the list with the Fibonacci series.

#EX2. Develop a function that prints all the prime numbers lower than a given number. Also:
develop a function that prints the lower prime number smaller than a given number.

#EX3. Develop a function that reads a text file, and writes in a different file the text of the
original file without the vocals.

#EX4. Generate a random integer between 1 and 10. Ask the user to guess a number, then tell
her whether the guessed number is too low or too high, and repeat the question until she
guesses the generated random number.

#EX5. Repeat exercise EX0d. but avoiding the function sorted(): write a function receiving a
string and returning a string with the words in alphabetic order.

#EX6. Write a Python function that opens a file and creates a second file in which it is
written, in one column, the finite difference between the elements of the n-th column of the

original file (i.e., the i-th row of the output column should be the difference a(i+1)-a(i), being
a(i) the i-th row of the n-th column of the original file). The function should take n and the
filename as arguments. You can test your program with the test file ‘BinderL128.dat’.
#######################
#######################
#######################

