
Zero-th lesson: Computer programs

1. The Halting Problem

Turing's paper ... contains, in essence, the invention of the modern
computer and some of the programming techniques that accompanied it.
— Minsky (1967), p. 104 [from Wikipedia]

>>A Turing machine is a mathematical model of computation that defines an abstract
machine[1] which manipulates symbols on a strip of tape according to a table of rules.[2]

>>The machine operates on an infinite[4] memory tape divided into discrete cells.[5] The
machine positions its head over a cell and "reads" (scans[6]) the symbol there. Then, [given
the symbol, and the present place of the machine] in a finite table[7] of user-specified
instructions, the machine (i) writes a symbol (e.g. a digit or a letter from a finite alphabet) in
the cell (some models allowing symbol erasure[8] or no writing), then (ii) either moves the
tape one cell left or right (some models allow no motion, some models move the head),[9]
then (iii) (as determined by the observed symbol and the machine's place in the table) either
proceeds to a subsequent instruction or halts[10] the computation.

The Turing machine was invented in 1936 by Alan Turing[11][12] (c.f. fig. 1). With this
model, Turing was able to provide a (negative) answer to the question: (1) Does a machine
exist that can determine whether any arbitrary machine on its tape is "circular" (e.g. freezes,
or fails to continue its computational task).[14] Thus by providing a mathematical description
of a very simple device capable of arbitrary computations, he was able to prove properties of
computation in general—and in particular, the uncomputability of the Entscheidungsproblem
("decision problem").[15]

>> Thus, Turing machines prove fundamental limitations on the power of mechanical
computation (Sipser 2006:137 observes that "A Turing machine can do everything that a real
computer can do. Nevertheless, even a Turing machine cannot solve certain problems. In a
very real sense, these problems are beyond the theoretical limits of computation.").

>> While [Turing machines] can express arbitrary computations, their minimalistic
design makes them unsuitable for computation in practice: real-world computers are based on
different designs that, unlike Turing machines, use random-access memory.

>> In terms of computational complexity, a multi-tape universal Turing machine need
only be slower by logarithmic factor compared to the machines it simulates. This result was
obtained in 1966 by F. C. Hennie and R. E. Stearns. (Arora and Barak, 2009, theorem 1.9)

Relationship with Goedel’s incompleteness theorems

>> The concepts raised by Gödel's incompleteness theorems are very similar to those raised

https://en.wikipedia.org/wiki/Mathematical_model_of_computation
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/Turing_machine#cite_note-1
https://en.wikipedia.org/wiki/Turing_machine#cite_note-2
https://en.wikipedia.org/wiki/Turing_machine#cite_note-4
https://en.wikipedia.org/wiki/Discrete_mathematics
https://en.wikipedia.org/wiki/Turing_machine#cite_note-5
https://en.wikipedia.org/wiki/Turing_machine#cite_note-6
https://en.wikipedia.org/wiki/Turing_machine#cite_note-7
https://en.wikipedia.org/wiki/Turing_machine#cite_note-8
https://en.wikipedia.org/wiki/Turing_machine#cite_note-9
https://en.wikipedia.org/wiki/Turing_machine#cite_note-10
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Turing_machine#cite_note-Hodges-2012-11
https://en.wikipedia.org/wiki/Turing_machine#cite_note-12
https://en.wikipedia.org/wiki/Turing_machine#cite_note-14
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Turing_machine#cite_note-15
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorem

by the halting problem, and the proofs are quite similar. In fact, a weaker form of the First
Incompleteness Theorem is an easy consequence of the undecidability of the halting problem.
This weaker form differs from the standard statement of the incompleteness theorem by
asserting that a complete, consistent and sound axiomatization of all statements about natural
numbers is unachievable.

>> The first incompleteness theorem states that no consistent system of axioms whose
theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all
truths about the arithmetic of the natural numbers. For any such formal system, there will
always be statements about the natural numbers that are true, but that are unprovable within
the system. The second incompleteness theorem, an extension of the first, shows that the
system cannot demonstrate its own consistency.

>>For example, one […] consequence of the halting problem's undecidability is that
there cannot be a general algorithm that decides whether a given statement about natural
numbers is true or not. The reason for this is that the proposition stating that a certain
program will halt given a certain input can be converted into an equivalent statement about
natural numbers. If we had an algorithm that could find the truth value of every statement
about natural numbers, it could certainly find the truth value of this one; but that would
determine whether the original program halts, which is impossible, since the halting problem
is undecidable.

2. Computer programs

>> A computer program is a collection of instructions[1] that performs a specific task when
executed by a computer. A computer requires programs to function and typically executes the
program's instructions in a central processing unit.[2]

>> A computer program in the form of a human-readable, computer programming language
is called source code. Source code may be (1) converted into an executable image by a
compiler or (2) executed immediately with the aid of an interpreter. Compilers are used to
translate source code from a programming language into […] machine code.[19] […]
Machine code consists of the central processing unit's native instructions, ready for
execution. Compiled computer programs are commonly referred to as executables, binary
images, or simply as binaries – a reference to the binary file format used to store the
executable code.

https://en.wikipedia.org/wiki/Consistency_proof
https://en.wikipedia.org/wiki/Soundness
https://en.wikipedia.org/wiki/Axiomatization
https://en.wikipedia.org/wiki/Consistency
https://en.wikipedia.org/wiki/Effective_procedure
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Proposition
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer_program#cite_note-aup-ch4-p132-1
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer_program#cite_note-osc-ch3-p58-2
https://en.wikipedia.org/wiki/Human-readable
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Executable_file
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Computer_program#cite_note-19
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/File_format

