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Abstract

These lecture notes correspond to the 30-hour Ph D course given at the University of Parma
in 2016. Not pretending to be self-contained, they can be conceived as a kind of formulary,
quite compressed essence of the treated arguments, or as a guide for the lessons.1

Monte Carlo is one of the least efficient [methods]; it should be used only on those
intractable problems for which all other numerical methods are even less efficient.

A. Sokal in [Sokal(1997)]

Never make a calculation until you know the answer. Make an estimate before every
calculation, try a simple physical argument (symmetry! invariance! conservation!)
before every derivation, guess the answer to every paradox and puzzle.

J. A. Wheeler
1A set of codes, illustrating many of the topics discussed, can be found in the link [Ibáñez-Berganza(2016)], to

which the folder names mentioned in these notes refer. Along the lecture notes, the Examples are thought to be
illustrated, sketched or worked out during the lessons, while the more specific Exercises are suggestions of homework
for the interested reader. The Exercises often consist in completing an already prepared “skeleton” code, so that the
source codes in the mentioned link may be consequently incomplete.
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1 Numerical distributions and integration
Cumulative method. To sample a probability distribution (PD) f , of which we know its (in-
vertible) primitive function, F , one samples ξ, uniformly distributed in [0, 1] (UD1), and returns
F−1(ξ).

Exercise 1. Develop an algorithm generating a couple of normally distributed variables in polar
coordinates using the cumulative method (Box-Muller algorithm, 1985).

Rejection Sampling. To sample a probability distribution f on a domain F , one chooses an
auxiliary PD g over G ⊃ F , that one knows how to sample, such that there is a sufficiently large
M , 1 < M <∞ so that Mg > f everywhere in F . One then extracts x ∈ F with probability g(x),
and returns x with probability f(x)/(Mg(x)). This happens with average probability 1/M , the
efficiency of the algorithm, and with variance (M − 1)/M2.

Exercise 2. To generate uniformly a set of numbers in the d-dim hypersphere, one uniformly
generates random vectors in the d-dim ball of radius R, then normalizes them, and returns the
resulting normalized vector. Use the rejection algorithm to demonstrate the validity of this algorithm
and compute its efficiency 1/M . Propose a different algorithm outperforming it for large values of
d.

Hit-or-miss Monte Carlo (MC) integration. To integrate a one dimensional function f
in [a, b], one chooses M > max f , m < min f , and then: generates ξ2j , ξ2j+1, UD1; computes
x = a+ (b−a)ξ2j and y = (M −m)ξ2j+1; if y < f(x)−m set R+ +; for j = 1, . . . , n. The integral
can be estimated as I ' (R/n)(M −m)(b− a) +m(b− a). For large n, the standard deviation of
the result is given by s = n−1/2(M −m)(b− a)(R/n− (R/n)2)1/2.

Exercise 3. Check the above proposition on the standard deviation of the hit-or-miss MC integra-
tion.

Exercise 4. Use the hit-or-miss method to demonstrate the validity of Buffon’s 1777 method to
compute the number π.

Crude MC integration. To integrate a one dimensional function f in [a, b], one: generates ξ,
UD1; computes x ≡ a + (b − a)ξ and fj ≡ f(x); for j = 1, . . . , n. The integral of f , I, can be
estimated as I ' (b− a)〈f〉n where 〈f〉n =

∑n
j=1 fj/n is the average. In particular, fj are random

numbers with average 〈f〉∞ = I/(b−a) and variance σ2 = 〈f2〉∞−〈f〉2∞, the central limit theorem
wants the variable wn = n1/2(〈f〉n − 〈f〉∞) to be distributed (0, σ)-normally for large n, in other
words:

〈f〉n = 〈f〉∞ + n−1/2σy (1.1)

where y is a standard Gaussian variable. The generalisation to multi-dimensional functions is
straightforward, the variance of the estimation is ∼ n−1, independent of d.

Exercise 5. Demonstrate the central limit theorem (c.f., for example [Marinari and Parisi(2004)]).

Importance Sampling. Suppose the (multidimentional) function f to be integrated in the
interval A, being very heterogeneous in A, and a probability distribution g on A such that f/g is
less heterogeneous (i.e., 1/g is larger in the regions of A in which f is lower). One, hence, chooses
a point xj in A with probability g(xj) and hj ≡ f(xj)/g(xj); for x = 1, . . . , n. The integral of f
can be then estimated as I ' (

∑n
j=1 hj)/n. The error is again n−1/2σ, but the variance is now

σ2 = 〈h2〉∞ − 〈h〉2∞ where h = f/g.

Exercise 6. Consider the integration of the function I =
´ 1
0

dx
´ x
0

dy g(x, y), and the following
algorithms: 1) generate n couples of UD1 xj , yj, j = 1, . . . , n; evaluate I1 = (1/n)

∑
j g(xj , xjyj).

2) generate n couples of UD1 points xj , yj; for each one, if xj < yj, interchange them (xj ≡ yj,
yj ≡ xj); compute I2 =

∑
j g(xj , yj). Correct both algorithms so that they estimate I. Which one

is more efficient?
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Example 1. Inefficiency of uniform sampling MC in the canonical ensemble. Recall the canonical
ensemble: at inverse temperature β, one is interested in a probability distribution for ε, the intensive
energy, given by pβ(ε) = exp[−NβΦ̃(β, ε)]/Zβ, where Φ̃ = N(ε− Ts) is the free energy functional
(and s is the microcanonical entropy), N is the system mass, and Z is the partition function.
In saddle-point approximation, it is Zβ = exp[−NβΦ(β)], where Φ(β) = minε Φ̃(ε, β) is the free
energy. The probability of finding a configuration with energy ε′, different from the most probable
energy εβ, is, hence, pβ(ε′) = exp[−Nβ(φ̃(β, ε′) − φ̃(β, εβ))], which is exponentially suppressed in
N . It follows that a random configuration (as those sampled in an unbiased MC) has exponentially
suppressed probability of not having ε0. On their turn, they have exponentially vanishing probability
in an ensemble at β > 0.
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2 Markov-Chain Monte Carlo
Markov Chains. Consider a discrete space Σ of N configurations (or states, σi, i = 1, . . . ,N )2.
A Markov Chain is a sequence of configurations such that the conditional probability of having
σ(t), the configuration at time t depends only on σ(t), σ(t−1). The transition probabilities can
be cast into a matrix p whose element pij is the transition probability of the i-th to the j-th
state, i, j = 1, . . . ,N . The transition matrix is a stochastic matrix, it satisfies: pij > 0 ∀i, j and∑
j pij = 1. The Markov Chain characterized by p is said irreducible if given any two states i,

j, one can reach j form i in a finite time, i.e., if there exists n such that (pn)ij > 0. A stronger
property is aperiodicity: if there exists a n such that (pt)ij > 0 for all i, j, and for all t > n (an
irreducible, aperiodic Markov Chain is said ergodic).

The matrix p along with the PD for the first element of the chain, π(0), define the Markov
Chain, and induce a probability measure on the set of n sequences of states, σi1σi2 . . ., which is
π(0)(σi1) pi1i2pi2i3 . . . (averages of observables according to such a sequence of states are denoted
by 〈·〉π(0)), and the probability of having the j-th state at time t is =

∑
i(p

t)ijπ
(0)(σi).

Theorem 1. Discrete, aperiodic, irreducible Markov Chains are such that

1. The limit πj = limn→∞(pn)ij uniquely exists, independently on i. πj ≡ π(σj) is a PD
(
∑
j πj = 1), stationary under p:

πj =
∑
i

pijπi Balance condition (2.1)

2. The fraction of times the j − th state is visited in a sequence of length n is independent on
π(0) and equals πj, in the limit limn→∞.

3. If f ∈ l2(π) (square-integrable with respect to π) and fi ≡ f(σi), it is:

lim
n→∞

1

n

n∑
t=0

f(σ(t)) =

N∑
i=1

πifi (2.2)

regardless of π(0), the fluctuations for finite n being of order n−1/2.

Exercise 7. Let us define the distance between two distributions ||α−β|| =
∑
j |αj−βj |. Consider

a Markov Chain satisfying the detailed balance condition equation 2.3, and show that the distance
between a vector v and the stationary distribution π is larger than that between v†p and π†. This
proves that the stationary distribution is a fixed point of the matrix p.

Exercise 8. Consider a stochastic matrix p with no zero elements and with ε being is its lower
entry. If M0, m0 are the maximum and minimum components of vector v, and M1, m1 are the
maximum and minimum components of vector pv, then it is (M1 − m1) ≤ (1 − 2ε)(M0 − m0).
It follows that if d(j)n = M

(j)
n − m(j)

n is the difference between the maximum an minimum of the
j-th column of pn, it is d(j)n < (1 − 2ε)n, where we have set d(j)1 < (1 − 2ε). Check that for an
aperiodic stochastic matrix p, it is (pn)ij = πj + eij where |eij | < c rn, being c > 0, 0 < r < 1 (take
r = (1 − 2ε)1/M , c = (1 − 2ε)−1, M is the first integer such that pM has no zero elements, and
epsilon is the lower entry of pM ) (see [Bhat and Miller(2002)]).

Exercise 9. In an aperiodic Markov chain, consider the measured rate of appearance of the j-th
state: π(n)

j =
∑n
k=1 δσ(k),σj/n. Show that the average 〈·〉α of this stochastic number in the MC

with initial distribution α is = πj with α = π. For α 6= π, it converges to πj for large n, the bias
being of order 1/n (hint: use the matrix identity (1−X)−1 =

∑
m≥0X

m).

The dynamic (or Markov-Chain) MC method consists in choosing a transition matrix P
such that its stationary distribution π is the desired one. The theorem before requires for the
dynamic MC method to work, that 1) p must be irreducible and 2) that it satisfies the Balance
condition. A sufficient condition for balance is detailed balance:

2we will deal with states composed by N degrees of freedom, Σ = Σ⊗N1 , where Σ1 is the single-particle degree
of freedom (a binary spin S1 = {0, 1}, in the case of the Ising model, for example)
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πipij = πjpji Detailed balance condition (2.3)

The two main limitations of dynamic MC sampling and their associated timescales are the
following: 1) when the starting PD π(0) is not the stationary distribution, the first measurements
produced by the dynamic MC are not distributed according to π, this only happens after an order
of steps bounded from above by the transient or exponential time τe. 2) Once the chain is in
equilibrium, for times much larger than τe, measurements of an observable f ∈ l2(π) from configu-
rations separated by consecutive steps are not independent; the fundamental timescale associated
with this problem is the (auto) correlation or integrated time τi,f , the order of consecutive MC
steps needed to obtain decorrelated values of the observable f .

The (integrated) correlation time corresponding to f may be defined as:

τi,f = 1 + 2

∞∑
t=1

ρf (t); ρf (t) =
Cf (t)

Cf (0)
(2.4)

where Cf is the temporal correlation function of f :

Cf (t) = 〈f(σ(s))f(σ(s+t)〉π − 〈f(σ(s))〉2π (2.5)

(in equilibrium the average 〈·〉π is time-translational invariant). One has that the variance of the
average of f in the dynamic MC after n steps, supposing that the equilibrium has been attained
(i.e., the variance according to 〈·〉π) is given by (check it!):

lim
n→∞

Varπ

[
1

n

n∑
k=1

f(σ(k))

]
' τi
n
Cf (0) (2.6)

i.e., it decays with n as in the unbiased or uncorrelated MC, but it is roughly τi times larger.

Transient (or exponential correlation) time. It represents the timescale of the slowest mode.
It can be defined as the maximum τe = supf τe,f over the operator-dependent exponential times:
τe,f = limt→∞ sup (−t)/ln |ρf (t)|.
τe is equivalently defined as R = exp(−1/τe) where R is the spectral radius of P−Π being Πij = πj
(i.e., the spectral radius of P acting on the orthogonal complement of the constant functions). If
RA is the spectral radius of matrix A ∈ Cn×n, then RA < 1 if and only if limk→∞Ak = 0; it
follows that the spectrum of P lies in the unit circle and that aperiodic chains exhibit a single
eigenvalue in the complex unit circumference, corresponding to the stationary distribution. R is
the modulus of the eigenvalue of P with second larger modulus (the interested reader is invited
to check the equivalence of both definitions of τe in the case of a reversible, i.e., that satisfies the
detailed balance condition, Markov Chain.

One can see that R governs the convergence to equilibrium of the Markov Chain: consider the
difference between the MC average of the observable f , with α as initial PD on Σ, and the average
according to π:

|〈f(σ(t))〉α − 〈f〉| =
∣∣(α− π)† · (P −Π)t · f

∣∣ (2.7)

(check it!). By the spectral radius formula this is, for high enough t 3

|〈f(σ(t))〉α − 〈f〉| ≤
∥∥(P −Π)t

∥∥ ∣∣(α− π)† · f
∣∣ ≤ e−t/τe |〈f〉α − 〈f〉| (2.8)

i.e., the initial bias decreases exponentially with time, if τe is finite.

Exercise 10. Use the spectral decomposition of ρf to prove that τif ≤ τe (hint: check [Sokal(1997)]).
3mind that RA ≤ ||Ak||1/k.
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Role of self-correlation times in numerical studies of phase transitions

• Transient time. One needs τe to know how many initial MC measurements have to be
discarded before constructing the average of the desierd observable (although in principle it
is not needed, since the initial bias decays as n−1 after n steps, while the correlation bias
dominates as it is ∼ n−1/2). For most systems of interest, one cannot know τe, it diverges
or it is overly conservative for the purposes of the MC dynamics. One could estimate it
measuring Cf for a given number of observables. Also in this case, however, the estimated
value of τ after n steps is reliable only if the true τe � n.

• Alternatively, one could perform empirical equilibration checks, as comparing the stationarity
of the relevant observable histogram over different (exponentially larger and larger) intervals
of time. Empirical methods may provide wrong answers in the presence of metastability or
out-of-equilibrium stationarity: the system may present stationarity at times much lower
than τe. There are no absolute recipes to prevent such a bias. A practical solution is to
change the initial distribution π(0) (hopefully, exploring the various minima of the relevant
thermodynamic potential).

• Correlation time. It is needed to estimate the efficiency of the algorithm (defined as τi−1
divided by the computer time to perform one step of the algorithm), and also to estimate
the errors of the desired quantity (of order (τi,f/n)1/2) or, conversely, the numer n of needed
MC steps to achieve a desired accuracy.

Exercise 11. What? Didn’t you say (see (2.8)) that the initial bias decreases exponentially? And
now (and in Exercise 9) you say that it decays as 1/n ! Where is the apparent paradox? Convince
yourself that the MC bias in the average of a function f due to the initial transient is ∼ n−1.

Sources of correlations in phase transitions. In substance, we have seen that the efficiency
of dynamic MC algorithms is compromised by temporal correlations. In systems undergoing phase
transitions, frequent sources of temporal correlations are:

• Critical slowing down ([Hohenberg and Halperin(1977)]). The integrated autocorrelation
time is proportional to the z-th power of the correlation length (at intensive thermodynamic
variable µ) τ ∼ ξ(µ)z, z being the dynamic critical exponent. In the vicinity of continuous
phase transitions τ , hence, it diverges as τ ∼ |µ−µ∗|−zν in an infinite system, and as τ ∼ Lz
in a finite system at µ∗ (see Sec. 5). Many local MC algorithms exhibit a large dynamical
critical exponent, near 2. Cluster methods (see Subsec. 3.3) sensibly reduce them.

• Metastability. In first-order transitions, there is a more severe slowing-down problem, called
exponential critical slowing down: in phase coexistence, both phases are separated by a
surface tension Σ, inducing a thermodynamic potential barrier of heigh of order ΣV (d−1)/d.
The time needed to overcome it is of order exp(ΣV (d−1)/d) ([Binder(1987)]).

• Glassyness. Systems with glassy behavior present an exponential growth of the relaxation
time [Debenedetti(1996)]. For the continuous transition of spin glasses, the dynamical critical
exponent may assume very high values [?]. The Parallel tempering algorithm is used to
mitigate this effect.
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3 Monte Carlo algorithms and phase transitions

3.1 Metropolis and Gibbs sampling (heatbath) algorithms
Metropolis-Hastings algorithm. A general way of constructing a Markov Chain is first propos-
ing a transition from state i-th to j-th defined by the proposal matrix p(0)ij (where p(0) is a stochas-
tic irreducible matrix), and accepting it with probability aij . The transition matrix is hence
pij = aijp

(0)
ij for i 6= j and pii = p

(0)
ii +

∑
j 6=i p

(0)
ij (1 − aij) (for the correct normalization it is

necessary to keep refused configurations). Detailed balance is satisfied if

aij = F

(
πjp

(0)
ji

πip
(0)
ij

)
(3.1)

being F : R+ → [0 : 1] satisfying F (x) = xF (1/x). The Metropolis algorithm corresponds to:

F (x) = min{x, 1} (3.2)

If the proposal matrix satisfies detailed balance, all the proposals are accepted. For any symmetric
irreducible proposal matrix, the acceptance probabilities depends only on the ratio between the
target distribution probabilities:

aij = min

{
πj
πi
, 1

}
(3.3)

in the canonical ensemble at inverse temperature β, for example, this reads to aij = min{1, exp(−βN(εi−
εj))} where εj are the per site energy of the j-th configuration.

Single-particle updating. Consider a system composed byN degrees of freedom σ = ⊗Nm=1σ
(m),

where σ(m) is the m-th particle state. Let p(m) be the transition matrix in which only particle m
is updated:

p
(m)
ij > 0 σ

(n)
i = σ

(n)
j ∀n 6= m (3.4)

p
(m)
ij = 0 otherwise (3.5)

Updating a random sequence of particles, one at once, is called random-particle updating, and a
sequence ofN random particle updating is called a sweep, the corresponding transition matrix being
p = (1/N)

∑N
m=1 p

(m). If the particles are updated following a given sequence of indices i1, . . . , iN ,
the updating is called sequential, the corresponding transition matrix being p =

∏N
m=1 p

(im). Still
a different scheme is called M - multi-hit algorithm, in which one selects one particle, and applies
the Metropolis algorithm M times (proposing a new state for particle m and accepting it with
matrix a), whose transition matrix corresponds to p = (1/N)

∑N
m=1[p(m)]M . If the single-particle

transition matrices satisfy detailed balance, so does the random-particle updating matrix, while the
sequential matrices satisfy, in general, only the balance condition (which is the required condition
for a valid MC).

Exercise 12. Why not proposing attempts of all the particles at once? Consider the effect of this
strategy in the mean square displacement per computer time, in a gas, or in its equivalent in a
magnetic system.

Gibbs sampling (heatbath) algorithm. We define the transition matrix of the heat bath
algorithm as p(m)[σ → σ′] = π(m)(σ′(m)|σ\m), equal to the marginal stationary probability distri-
bution of the m-th particle degree of freedom, given the rest of the configuration σ\m, and new
and old configurations being equal except by the m-th particle, σ′\m = σ\m. In other words, the
Gibbs sampling or heatbath algorithm proposes a new state of particle m with its marginal sta-
tionary probability, independently of the current state of particle m. Many particles can then be
sequentially or randomly updated, as in the precedent paragraph. The MC sweep results to satisfy
balance, and is aperiodic.
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Figure 3.1: Energy vs. number of MC sweeps for the q = 10 2D Potts model in the square
lattice with periodic boundary conditions at β = 1.24, using several MC algorithms (Metropolis,
heatbath, 2-hit Metropolis, 2-hit with random sweeps), and starting from ordered and disordered
configurations (find the details of the simulation in the folder Potts/beta1.24).

Exercise 13. The curious reader is invited to discuss the eventual satisfaction of the balance
and detailed balance conditions of the algorithm in the case of a magnetic system with the O(M)
Hamiltonian H[σ] = −

∑
iAij~σi · ~σj (where~ denotes an SM−1 vector). At the level of the single

particle, the heat bath algorithm obviously satisfies detailed balance, since it does not depend on the
departure state σ but only on the target state σ′. Does the probability π(σ′)p(m)(σ′ → σ′′) equal
π(σ′′)p(m)(σ′′ → σ′)?

Example 2. The q-Potts model Hamiltonian is H[σ] = −
∑

1≤i<j≤N δσ(i)σ(j)Aij, where the single
particle (spin) space of states is σi ∈ {1, . . . , q}, and where the adjacency matrix A defines the
interaction topology. Consider the Potts model on the square lattice with periodic boundary con-
ditions in the canonical ensemble at inverse temperature β. One can implement the Metropolis
and heat-bath algorithms (as done in the codes potts_main.cpp) and: 1) test the result, for q = 2,
with the Onsager solution for the expected value of the magnetization (see Potts/IsingTest/); 2)
compute the intensive energy ε = 〈H〉/N at β = 1.24, linear length L = 64, q = 10 using heat-
bath, 1-hit and 2-hit Metropolis algorithms, with sequential and random updating (see the folder
Potts/beta1.24/ and figure 3.1). Which algorithm is faster? What happens with the Metropolis
M -multi-hit algorithm in the limit of large M?

3.2 MC in different ensembles
Example 3. Lennard-Jones fluid. Consider the Lennard-Jones fluid in the T, V,N ensemble:
a collection of N classical particles in a three dimensional box of length V 1/d (d = 3) with periodic
boundary conditions, interacting through the pairwise Lennard-Jones potential (in reduced units):

u(r) = 4
[
r−12 − r−6

]
. (3.6)

One can use the Metropolis algorithm to compute the pressure as a function of the density
ρ = N/V = v−1 for a given temperature (see the code LJ_main.cpp). The pressure can be computed
with the virial equation:

P (β, ρ) = Tρ+
1

3V
〈
∑

1<i<j<N

f(rij) · rij〉β,V (3.7)

(see, for example, [Hansen and McDonald(1990)]), where f(r) is the force between two particles
separated by the vector r. The interaction range is to be cutoff in some way: one can cutoff it at
the half box length L/2, and use the tail correction for the energy and pressure (see [Frenkel and
Smit(2001)]). To check the correctness of the algorithm, one may compare the resuling estimation
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Figure 3.2: P vs ρ for T = 2.0 (left) and for T = 0.9 (right) of a Lennard-Jones fluid with N = 130
in a cubic lattice with periodic boundary conditions according to the Metropolis algorithm (points,
see the codes and details of the simulation in the folder LJ/) and to the 1st and 2nd-order Virial
expansion.

of the pressure with both its 2nd-order virial expansion for the Lennard-Jones gas (with which it
must coincide for sufficiently low ρ or sufficiently large T ):

βP (β, V ) = ρ+
∑
i>1

ρiBi(β) B2(β) = −2π

ˆ ∞
0

dr r2 [exp(−βu(r))− 1] , (3.8)

and with the empirical equation of state of [Kolafa and Nezbeda(1994)]. What happens with the
pressure when we take low temperatures, below the condensation point (say, T = 0.9) in the density
range ρ < 1, in systems with N . 500 (see figure 3.2), is it as you expected? Do this behavior
correspond to equillibrium (the answer may be unexpected, c.f. [Landau et al.(2010)Landau, Lewis,
Schuettler, Nussbaumer, Bittner, Neuhaus, and Janke])? Are there metastable effects in this case?

Example 4. Metropolis algorithm in the isobaric ensemble. Consider a fluid system whose
degrees of freedom σ are the spatial positions in a d-dimensional space σ = {ri}Ni=1.4 In the isobaric
(β, P,N) ensemble, the partition function is:5

Θ(β, P,N) =

ˆ
dV e−βN [(f(β,v)+Pv)] =

ˆ
dV

ˆ
V

dr e−βH[r]−βPV (3.10)

While the probability of having a configuration r = {ri}Ni=1 enclosed in a volume V is:

pβ,P,N [r;V ] =
1

Θ(β, P,N)
e−βH[r]−βPV (3.11)

We now promote the volume as one extra degree of freedom, so that the coordinates are parametrized
as ri = Lsi where L = V 1/d. The partition function as a function of the degrees of freedom s reads:

Θ(β, P,N) =

ˆ
dV

ˆ
1

dsV N e−βH[s·L]−βPV (3.12)

the probability of having a rescaled configuration s in a volume V is:

p̃β,P,N [s;V ] =
1

Θ(β, P,N)
e−β(H[s·L]+PV−TN lnV ) (3.13)

One can use this equation to construct a Metropolis algorithm in which both s and V are changed
independently (it is actually more convenient to perform random changes in lnV –what would be
the consequent change in the probability?–).

4The integration over the momenta would introduce a further irrelevant factor ΛdN , Λ = (2πmT )1/2 in Θ, where
m is the mass of the particles

5 The partition function for large N is dominated by the most probable value of V :

Θ(β, P,N) = e−βN [g(β,P )] largeN (3.9)
where g(β, P ) = minv [f(β, v) + Pv], from which we learn that P (β, v) = −∂vf |β,v .
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Exercise 14. Implement a Metropolis algorithm in the β, P,N ensemble as explained in Example
4, apply it to study the Lennard-Jones system of example 3. Does this algorithm solve the problem
found at low temperatures? In other words: does one obtain the coexistence curve in this ensemble?
Are there metastable effects in this case?

3.3 Cluster algorithms
Fortuin-Kasteleyn representation. Consider the q-color Potts model, with HamiltonianH[σ] =∑

(i,j) Jij(1− δσ(i),σ(j)), in a lattice with N nodes in d dimensions, where (i, j) are unordered sets
defining bonds of the lattice. The partition function can be written as:

ZN (β) =
∑
σ

∏
(ij)

[
δσi,σjwij + (1− wij)

]
(3.14)

where wij = 1− e−βJij . One can write this in a redundant way as:

ZN (β) =
∑
σ,n

∏
(ij)

[
δσi,σjwijnij + (1− wij)(1− nij)

]
(3.15)

where n = {nij}1<i<j<N , nij = 1, 0 is a configuration of active (=1) or inactive (=0) bonds. In
other words, we can express the partition function in terms of the bond degrees of freedom only
(Fortuin-Kasteleyn representation, [Fortuin(1969)]):

ZN (β) =
∑
n

 ∏
(ij)|nij=1

wij

 ∏
(ij)|nij=0

(1− wij)

 qc[n] (3.16)

where c[n] is the number of connected components of the bond configuration n (an isolated site
being a connected component) (notice that if Jij = 1, it is Z =

∑
n w

b[n](1−w)b0−b[n]qc(n), where
b0 is the total number of bonds in the lattice (= dN in a d-dimensional hypercubic lattice with
periodic boundary conditions) and b[n] is the number of bonds of the bond configuration n). One
can also generalize the model, defining a probability measure in the set of all possible sets of bonds
and configurations, treating them independently, based on eq. 3.15:

µN (β)[σ,n] =
1

ZN (β)

∏
(ij)

[
δσi,σjwijnij + (1− wij)(1− nij)

]
(3.17)

The marginal probability for the spins (summing µ over the bonds) gives the canonical prob-
ability distribution of the Potts model, while the marginal probability of the bonds (the terms in
the sum of 3.16) gives the so called random cluster model.

Cluster algorithms. The Fortuin-Kasteleyn representation has been used to construct a series
of algorithms ([Swendsen and Wang(1987)],[Edwards and Sokal(1988)],[Wolff(1989)]) which, for
many models, present significantly lower values of the dynamical critical exponent z (references
on the applicability of these algorithms for different systems can be found in [Amit and Martín-
Mayor(2005)]). Equation 3.17 provide the conditional probability of having a bond configuration,
given a spin configuration, and vice versa. In particular, the probability of a bond (i, j) to be active,
given the σ, is: if σ(i) = σ(j), nij = 1 with probability 1 − e−βJij ; if σ(i) 6= σ(j), nij = 0. Vice-
versa, in the bond (i, j), the spins have uncorrelated random values if nij = 0 and assume a random
common value if nij = 1. The Swendsen-Wang cluster algorithm [Swendsen and Wang(1987)] is
constructed in the following way: given a spin configuration σ, one generates a bond configuration
with conditional probability given by (3.17); from the resulting bond configuration n one generates
a new spin configuration, again with probability given by (3.17), from which one generates a new
bond configuration, and so on. The algorithm is a sequence of alternating (first moving bonds only,
then moving spins only) heat bath MC changes in the extended system of bonds+spins degrees
of freedom. The heatbath MC satisfying the balance condition, after a sufficiently large number
of cluster iterations, the transient becomes irrelevant and the resulting visited spin configurations
are distributed according to the Potts model probability distribution in the canonical ensemble
(which, mind, is the marginal probability (3.17), summing over the bond configurations).

A variant is the Wolff cluster algorithm [Wolff(1989)]: given a spin configuration, one selects
a spin randomly, consider the geometrical cluster to which it belongs (the set of connected lattice
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bonds presenting its same colour); one then generates a FK cluster, or a connected subset of bonds
of the geometrical cluster such that the bonds are active (nij = 1) with probability 1 − e−βJij );
one finally selects a new spin configuration by (randomly) “coloring” the resulting FK cluster.

Wolff embedding. One can generalize the Wolff algorithm above to models with continuous
degrees of freedom. Consider the O(M > 1) model, one can superimpose an Ising like model,
in which every spin has a degree of freedom si = 0, 1, representing a reflection on the plane
perpendicular to a reference vector ~r, ~σ → ~σ − 2si(~r · ~σ)~r. One has, in this way, a q = 2 effective
Potts model with interaction strength Jij = (~σi · ~r)(~σj · ~r), for which one can apply the Wolff
algorithm [Wolff(1989)].

Exercise 15. Cluster estimators. (1) Consider the spin-spin correlation function of the fer-
romagnetic q-color Potts model at inverse temperature β, 〈δσ(i),σ(j)〉β, and demonstrate that it
coincides with 〈(q − 1)γij/q + 1〉p, where γij is an observable in the bond configurations, = 1 if
the sites i, j belong to the same bond cluster, and = 0 otherwise, and where the average is over
the random cluster model with p = 1 − e−β (see [Sokal(1997)] for references at this regard). (2)
Calculate the observables energy, 〈H〉/N and magnetization, 〈M〉, M[σ] =

∑N
i=1 δσ(i),0/N , as a

function of bond quantities (so that, using cluster algorithms, one can avoid computing energy and
magnetization explicitly).

Example 5. One can implement the Wolff algorithm for the Potts model in the square lattice (as
done in the folder PottsWolff), both recursively and non-recursively. What choice is faster, and
how does scale the CPU time with the system size in both cases? Is the Wolff algorithm efficient at
undercritical temperatures? Why does one obtain a null average magnetization (within fluctuations)
even at undercritical temperatures?

Exercise 16. Transition temperature of the 2D Potts model by duality. Consider the
q-color Potts model with N sites in the square lattice, with Hamiltonian H[σ] = −

∑
(i,j) δσ(i),σ(j) ,

where (i, j) is an unordered set defining a bond of the square lattice. In the Fortuin-Kasteleyn
representation, the partition function can be written (check!) as:

ZN (β) =
∑
b,c

NN (b, c)wbqc (3.18)

where NN (b, c) is the number of bond configurations in a square lattice (with the given boundary
conditions) with b bonds and c connected components (c = 1, . . . , N and b = 0, . . . , 2N with periodic
boundary conditions), and where w = eβ − 1 (notice that every isolated site is to be understood as
a component in itself). In the limit of infinite and zero β (order and disorder, respectively), the
partition function is ZN = qw2N and = qN , respectively. One can begin to “disorder” the ordered
configuration with one connected component and b = 2N , introducing ` bonds, b = 2N − `. Let k
be the number of connected components that has been created with the introduction of ` bonds, so
that c = k + 1. Let N (o)

N (`, k) = NN (2N − `, k + 1). It is immediate to see that (3.18) becomes:

ZN (β) = w2Nq
∑
`,k

N (o)
N (`, k)

(
w
√
q

)−`(
1
√
q

)`−2k
. (3.19)

Conversely, let us “order” the disordered configuration with c = N , b = 0 by adding ` bonds
and obtaining k less components with respect to N − `: c = N − ` + k, and let N (d)

N (`, k) =
NN (`,N − `+ k). The partition function in terms of N (d) is:

ZN (β) = qN
∑
`,k

N (d)
N (`, k)

(
w
√
q

)`(
1
√
q

)`−2k
(3.20)

1) Convince yourself of the following, crucial, result: due to the duality of the square lattice,
N (o)
N = N (d)

N . 2) From the two equations above, calculate the transition temperature of the Potts
model in the square lattice (that for which the (large-N) disorder and the order free energies coin-
cide).
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4 Error estimation
Jackknife error and bias estimation for uncorrelated quantities. An estimation for the
function f of the uncorrelated data {xi}ni=1 is f(x̄), where x̄ is the average estimation over the
data. The bias of this estimation, 〈f − f(x̄)〉 decreases as n−1, where the angles 〈·〉 denote the
average according to the true distribution of f .

The error of this quantity cannot be estimated with the error of the mean of {f(xi)}i, which is
very biased. It can be estimated with the Jackknife (JK) method: the strategy is to form nb = bn/b
blocks of length b, Bj = {b(j − 1) + 1, b(j − 1) + 1, . . . , bj} and jackknife averages x(b)i for the data:

x
(b)
i =

1

n− b
∑
j /∈Bi

xj , (4.1)

and their corresponding function values f (b)j = f(x
(b)
j ). The jackknife estimator of the average of

f and for the variance of the average of f are:

f (b) =
1

nb

nb∑
j=1

f
(b)
j s2(b)[f ] =

n− b
n

nb∑
j=1

(f
(b)
j − f

(b))2 (4.2)

If the data is uncorrelated, and the function f is an unbiased estimator, the JK estimation of
the variance with b = 1 coincides with the variance of the mean of the {f(xi)}ni=1 (check this!).
If the x’s are uncorrelated, and the estimation f(x̄) is biased, an improved, bias-corrected up to
order n−2 JK estimator, is (check it!)

f
(1)
1 = f(x̄) + (n− 1)(f(x̄)− f (1)) (4.3)

Exercise 17. The second-order JK biased-improved estimator is:

f
(b)
2 =

1

nb

nb∑
j=1

f (b)j +
1

nb − 1

∑
k 6=j

(f
(b)
j − f

(b)
jk )

 (4.4)

where

f
(b)
jk = f(x

(b)
jk ), x

(b)
jk =

1

n− 2b

nb∑
m 6=j,m 6=k

xm (4.5)

An unbiased estimator for f(x) = x2 is (check!) x̄2 − (−x̄2 + x2)/(n − 1). Check that this
estimator coincides with the second-order JK biased-improved estimator.

Jackknife error estimation for correlated data. If the data are correlated, the error of x
cannot be estimated with the equation for the standard deviation of the mean of x, which is an
underestimation. However, if b is of the order of the exponential correlation time, the blocks B
are independent, and the unbiased estimator for the variance of the mean of the average of x in
different blocks:

s2(b)[x] =
1

nb(nb − 1)

nb∑
j=1

1

b

∑
i∈Bj

xi

− x̄
2

(4.6)

becomes a correct estimator for the variance of x.

Estimation of τi with the JK method. Incidentally, eq. 4.6 provides a method to estimate
τi. According to eq. 2.6, the variance of x is τi times larger than if the data were uncorrelated.
We can write:

s2unc[x] =
1

n(n− 1)

n∑
j=1

(xj − x̄)2 (4.7)

τi '
s2(b)[x]

s2unc[x]
large b (4.8)
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How to estimate the error of such a τi estimation? One can neglect the error of the denominator
in 4.8 in front of the error of the numerator. If b is large enough so that the data are uncorrelated,
s2(b)[x] obeys the χ2-distribution, and its error can be analytically computed given nb only. In
particular, for m normally distributed data yi, the variable (m−1)s2[y]/σ2

y is distributed according
to the χ2-distribution, where s2[y] is the unbiased estimation for the variance and σ2

y the true
variance. 6 In other words, the variance lies with probability α in the interval [(m− 1)s2[y]/χ2

α/2 :

(m − 1)s2[y]/χ2
1−α/2], where χ2

α is the quantile, i.e., the value of the variable χ2 such that the
cumulative χ2-distribution F (χ2

α) = α.

Exercise 18. Demonstrate that, for m normally distributed data yi, the variable (m− 1)s2[y]/σ2
y

is distributed according to the χ2-distribution (see [Berg(2004)]). Demonstrate eq. 4.9.

Estimation of τi with the correlation function. One could be tempted to estimate τi using
eq. (2.4), substituting Cf (t) by its numerical estimation:

Ĉf (t) =
1

n− t

n−t∑
s=1

{
f(σ(s))− [f(σ(k))]k

}{
f(σ(s+t))− [f(σ(k))]k

}
(4.10)

where [·]s = (1/n)
∑n
s=1 · is the average over n consecutive MC configurations, so that the estima-

tion of τi becomes:

τ̂i = 1 + 2

n∑
i=1

ρ̂f (i) (4.11)

where ρ̂f = Ĉf/Ĉf (0). Actually, this turns to be a wrong estimate in the sense that the standard
deviation of the resulting estimated τi does not converge to zero for large n, due to the fact that, in
this way, one integrates the statistical fluctuations of Ĉf for large t. A better estimate is to cut off
the sum at a value M . The result would be τ̂i(M). M is to be self-consistently determined as the
smallest integer such that M > cτ̂i

(M). c depends on the form of the correlation function, and has
to be chosen such that it is not too large (in this case one integrates too undesired fluctuations),
and it is not too low (one biased the calculation of τi, cutting the sum in Cf when its contribution
to τ is still significantly). For many correlation functions, the interval 4 < c < 6 is optimal. A
more detailed discussion on this topic can be found in [Sokal(1997)].

Example 6. One can estimate τiε for the q = 10 Potts model on a square lattice of size L = 40
with PBC at β = 1.24, for the Metropolis and heatbath algorithms, as (1): τ̂i(M)

ε , defined in the
last paragraph (to estimate the error of τi, you will have to compute the error bars of Cε using the
JK method), and (2) using equation 4.8 (see figure 4.2 and the folder /Potts/JKerror/).

Exercise 19. 1) Estimate the efficiency of both algorithms considered in Example 6, in the same
circumstances. Does it pay to use heatbath? What do you expect at lower temperatures and
lower values of q? 2) Compute the intensive energy ε = 〈H〉/N at its (infinite-volume) transi-
tion temperature βq = ln(1 + q1/2) for q = 10 and check that it is compatible with its analytic
value ε10 ' 1.03179694974411. 3) Provide an error for the average intensive energy in the cir-
cumstances of example 2 (q = 10, β = 1.24, L = 64). Your result should be compatible with
ε10(1.24) ' −0.643461(25). 4) Compare the efficiency of the heatbath and Wolff algorithms for the
q-Potts model in the 2D square lattice with L = 128 at its transition point, for q = 2, 4, 10, 24.
What is the explanation for such a behavior?

Exercise 20. Metastability. Estimate the intensive energy ε = 〈H〉/N of the 2D Potts model
with L = 64, q = 20, at β = β20 + δ, δ = 10−3, starting from a disordered configuration. Do you
obtain the equilibrium state? Do you obtain a value of ε compatible with the analytical value of the
disordered energy at β20 (ε− ' 0.17931557491346, ε+ ' 1.37347082958657)?

6The χ2-distribution with m degrees of freedom is the one followed by the variable χ2 =
∑m
j=1 y

2
j , where yj are

normally distributed variables. It is

fm(χ′2) = mf(mχ′2) = a(Γ(a))−1e−aχ
′2

(aχ′2)a−1 (4.9)

where a = m/2 and χ′2 = χ2/m is the chi squared variable per degree of freedom.
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Figure 4.1: Energy versus number of MC sweeps for the q = 10 Potts model in a square lattice of
linear size L = 64 at the transition inverse temperature β10, starting from ordered and from disor-
dered configurations. The blue circle dataset corresponds instead to β10 + 5.10−3. The continuous
lines are the exact values for the ordered and disordered energies of the infinite-size square lattice
Potts model, see reference [Baxter(1973)].
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the jackknife method, see the function JKcorrfunction( ) in the script /common/corrfunc.py). The
continuous lines are t/4 and t/6 (= the mentioned cutoff M/c). The green points are result of the
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the number of blocks decreases and the (χ2) error of the error (hence of τi) increases. Note also
that the most precise estimation of τi lies within the error bars of the less precise estimations (and
not vice-versa), even for large block sizes.
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5 Finite-Size Scaling
Reminder of critical phenomena formulae.

m ∼ tβG(r) ∼ r−d+2−η exp[−r/ξ] (5.1)
ξ ∼ t−ν (5.2)

χ = −∂h〈m〉 = N(〈m2〉 − 〈m〉2) ∼ t−γ (5.3)
C = ∂T 〈ε〉 = β2N(〈ε2〉 − 〈ε〉2) ∼ t−α (5.4)

2− η = γ/ν (5.5)
dν = 2β + γ (5.6)

Deep (or bulk) and FSS regimes. Let us frame the discussion in a magnetic system. The
magnetic susceptibility χ is an intensive quantity (c.f. eq. 5.3), since the fluctuations of the mag-
netization are of order ∼ N−1/2 (idem for the specifi heat and the energy). For a finite-size system
of linear size L, this happens only in the so called deep (or bulk) ferromagnetic or paramagnetic
regimes, such that L � ξ(β, h), where ξ is the correlation length. In this circumstance, one can
divide the system into boxes of linear size, R, L� R� ξ, and apply the central limit theorem to
the block average of the magnetization inside different R-blocks: since they are independent, their
variance are of order σ2

m = n−1b σ2 where nb = bN/b is the number of blocks and σ is the standard
deviation of the single block magnetization (of order 0 in N), and hence χ ∼ O[1]. It follows that,
in the bulk regimes (at fixed size, for large enough L, χ and the rest of the intensive quantities do
not depend on L, see figure 5.1). In the deep ferromagnetic regime, the magnetization, hence, is
O[1], while in the deep paramagnetic regime, it is of O[N−1/2].

The opposite case, when L ∼ ξ, is called Finite Size Scaling (FSS) regime. The central limit
theorem cannot be applied any longer, the system is entirely correlated, σ2

m does not decrease as
N−1. As a consequence, χ is not intensive but it increases with a certain power of N , larger than
zero, (see figure 5.1). At the critical point, the correlation length diverges and the bulk regimes
cannot be reached even by the infinite-size system: indeed, the susceptibility is no longer of order
N0: it diverges for N →∞.

The bulk and FSS regimes are distinguished by the condition ξ � L. The FSS ansatz consists
in supposing that the FSS behavior of an L-sized system in a state at β, h is uniquely determined
by the ratio L/ξ(β, h).

5.1 The Finite Size Scaling ansatz
Supposing an observable diverging at the critical point with the exponent x: 〈O〉∞ ∼ |t|−x, where
t = |β − βc|/βc. The Finite Size Scaling (FSS) ansatz for its behavior in a finite lattice of linear
size L is:

〈O〉L(β) = Lx/νfO(L/ξ∞(t)) + corrections to scaling (5.7)

where ξ∞ is the correlation length in the thermodynamic limit. In other words:

〈O〉L(β) = Lx/ν
[
f̃O(tL1/ν) + L−whO(tL1/ν) + · · ·

]
(5.8)

The FSS hypothesis can be equivalently written (check!):

〈O〉L(β) = Lx/ν f̃O(tL1/ν) + · · · f̃O(w) = fO(wν) (5.9)
〈O〉L(β)

〈O〉∞(β)
=

˜̃
fO(L/ξ∞(t)) + · · · ˜̃

fO(w) ∝ wxf̃O(w). (5.10)

Given the form of the divergence of O, it is fO(w) → w−x/ν , or f̃O(w) → w−x for w → ∞.
(Figure 5.1 illustrates such a scaling for the susceptibility of the 2D Ising model, for which ν = 1/2
and γ = 7/4).

There are operators, as the specific heat, for which different forms of scaling apply (see figure
5.2):

CL(β) = ln(L)f̃C(tL1/ν) + corrections to scaling (5.11)
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Figure 5.1: Left: Non-connected susceptibility, χnc = N〈m2〉β2 vs. β for the 2D Ising model with
periodic boundary conditions and several linear sizes, L = 2i, i = 4, . . . , 7. Right: χncL

−7/4 vs tL.
The vertical line signals the Onsager exact critical temperature. The codes and simulation data
can be found in /PottsCUDA/graphPT_FSS/simulation1/. The observables (susceptibility, specific
heat, binder cumulant... ) have been produced with the python scripts in /common/dataAnalysis/.
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Figure 5.2: Idem as in figure 5.1 for the specific heat. The scaling is c/ lnL vs tL.

the scaling function presents a maximum at the apparent critical (inverse) temperature:

βc,L = βc(1 + w∗L−1/ν) (5.12)

where w∗ is such that f̃ ′(w∗) = 0.

5.2 Origin of FSS
The FSS ansatz can be actually proved using real-space renormalization group techniques. Under
a real space renormalization group transformations, in the presence of large correlation lengths,
under a scale transformation, L→ bL, the free energy density of the scaled and the original system
present the scaling:

fbL(t, h) = b−dfL(b1/νt, bλh) (5.13)
λ = (d+ 2− η)/2 (5.14)

as can bee seen by a decimation argument, à la Kadanoff, or using phenomenological scaling argu-
ments (see [Chaikin and Lubensky(2000)]). Based on this scaling form, and proposing a particular
real-space renormalization group transformation, one can deduce the FSS ansatz, including cor-
rections to scaling, the scaling of the order parameter probability density, equation 5.27, and the
alternative form for the specific heat (see [Suzuki(1977), Pelissetto and Vicari(2002), Amit and
Martín-Mayor(2005)]).

5.3 Determination of critical quantities with FSS
Scaling of the correlation length. We consider a lattice proxy for the (exponential) correlation
length, ξe = limr→∞(−r)/ ln(G(r)), the finite-lattice correlation length:
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Figure 5.3: Left: ξ/L vs. β for the same system of figure 5.1. The vertical line indicates the
Onsager inverse temperature β2 = ln(1 + 21/2). Right: Binder cumulant, g4.

ξL =
1

2 sin(|k0|)

[
s(0)

s(k0)
− 1

]1/2
(5.15)

where k0 is (one of the) the minimum momentum(a) of the lattice, and s is the discrete Fourier
transform of the correlation function G. The continuum limit of ξL, in the deep paramagnetic
regime tL1/ν � −1, is the second-moment correlation length:

ξ(2) = −s(k)−1∂k2s(k)|k=0 (5.16)

which is of the same order of ξe, and coincides with the correlation length of a free scalar theory.
In the FSS regime, the quantity ξL obeys a scaling (see Eq. 5.8):

ξL(β) = Lf̃ξ(tL
1/ν)

[
1 + L−whO(tL1/ν) + · · ·

]
(5.17)

(see [Amit and Martín-Mayor(2005)] for a deeper discussion on this point). See an illustration of
the scaling of ξL for the Ising model in Figure 5.3.

The quotient method: eliminating the temperature Using Eqs. 5.17 and 5.8, one can
write:

〈O〉L(β) = Lx/ν
[
f̂O(ξL(t)/L) + L−wĥO(ξL(t)/L) + · · ·

]
(5.18)

this formulation poses several advantages (the non-necessity of knowing the critical point, the
reduction of statistical errors, and the lower corrections to scaling).

The quotient method for the determination of critical temperatures and exponents consist in
performing MC simulations at different pairs of lattice size values. Given a pair L1, L2, one defines
the quotient:

QO(β, L1, L2) =
〈O〉L2(β)

〈O〉L1
(β)

(5.19)

One now defines L2 = nL1 being n an integer, and defines the temperature βn(L1) at which
Qξ(βn(L1), L1, nL1) = n. For a different observable, the quotient
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QO(β, L1, nL1) = sx/ν

[
f̂O(ξnL1

/(nL1)) + (nL1)−wĥO(ξnL1
/(nL1)) + · · ·

]
[
f̂O(ξL1/L1) + L−w1 ĥO(ξL1/L1) + · · ·

] (5.20)

evaluated at the temperature βn(L1) becomes:

QO(βn(L1), L1, nL1) = nx/ν +AL−w1 (5.21)

being A a constant.
There are typically two independent critical exponents, say ν and η. The may be determined

applying the quotient method to 〈M2〉 and ∂βξ:

x2M = (2− η − d)ν x∂βξ = 1 + ν (5.22)

The dimensionless quantities X (as ξ or g4) scale in a different way:

X(β(L1)) = X∗ +AXL
−w
1 (5.23)

while the inverse temperatures convergence to the critical point is:

β(L1)− βc ∝
1− n−w

n1/ν − 1
L−w−1/ν (5.24)

The interested reader is invited to try to work out equations 5.21, 5.24 and 5.23 using Eq. 5.17
and supposing that the scaling functions are smooth.

Example 7. Use the quotient method to estimate the exponent γ of the 2D Ising model in the square
lattice, using the data and the scripts generated in the folder (/PottsCUDA/graphPT_FSS/simulation2/).
For simplicity, one can suppose to know a priori the true value of the exponent ν = 1/2 (but to
ignore, of course, the critical temperature). Given the quality of the data, one should obtain some-
thing compatible with γ = 1.750(5).

Nightingale’s phenomenological renormalization group. Suppose one starts from a system
with size L1 at a temperature β1, and computes the inverse temperature, β2, of a system of size
L2 = nL1 such that ξL1(β1)/L1 = ξL2(β2)/L2. One then iterates this procedure, starting from
Li, βi and computing βi+1 at Li+1 = nLi (or, alternatively, Li+1 = Li + 1). The solutions will
satisfy, neglecting corrections to scaling, (βi+1 − βc)/(βi − βc) = n−1/νi . The fixed point of such
an equation for large i is βi = βc, νi = ν

The Binder cumulant. In some circumstances it is convenient to use the Binder cumulant as
a scaling variable, i. e., in the place of ξL/L:

g4 =
3

2
− 1

2

〈m4〉
〈m2〉2

(5.25)

It is immediate to check that g4 converges to one and zero in the deep paramagnetic and
ferromagnetic phases respectively 7.

The fact that it is a scaling variable comes from the extension of the FSS ansatz to the m
probability distribution. For N � ξ∞ it is (deep ferromagnetic regime):

p(m, t) =
N

2(2π)1/2χt

[
e−(m−|µt|)

2N/χt + e−(m+|µt|)2N/χt
]

(5.26)

in the FSS region the FSS ansatz is:

pN (m, t) = Lβ/νg(L/ξ,mLβ/ν) = Lβ/ν g̃(tL1/ν ,mLβ/ν) (5.27)

so that, for t = 0, the expectation value of 〈m4〉/〈m2〉2 (check it! by performing the average 〈·〉
using an integration over the variable m̃ = Lβ/νm) does not depend on L.

Figure 5.3 shows an illustration of the scale invariance of the Binder cumulant in the Ising
model.

7Recall that the 2-nd 4-th moments of a Gaussian distribution are: µ2 + σ2 and µ4 + 6µ2σ2 + 3σ4, respectively
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6 Elements of Markov-Chain Monte Carlo in Bayesian infer-
ence

6.1 Brief reminders
Bayesian estimators. We remind Bayes theorem:

f(θ|x) =
f(x|θ)π(θ)

π(x)
(6.1)

where θ are the hypothesis, x are the data, f(θ|x) is the posterior probability, f(x|θ) = L(θ;x) is the
data likelihood probability, π(θ) is the prior probability of hypothesis θ and π(x) =

∑
θ f(x|θ)π(θ)

is the marginal likelihood or the evidence.
Given the data, a Bayesian estimator for the hypothesis, θ̂, is a value of the hypothesis mini-

mizing the expectation 〈R(θ, θ′)〉f(θ|x) over the posterior of a given function R called Bayes risk.
The Bayesian estimator corresponding to the mean square error as the Bayes risk is the average
over the posterior: θ̂(x) =

∑
θ θf(θ|x).

An alternative estimation is the Maximum A Posteriori (MAP) estimator, or θ̂ = arg maxθ f(θ|x).

The Expectation-Maximization algorithm is a standard iterative method to provide a Max-
imum likelihood or a MAP Bayesian estimator. When the direct maximization over the posterior
function is not generally possible, but it may become feasible when additional, or missing values,
z are known. The corresponding complete likelihood is

fc(x, z|θ) = f(x|θ)π(z|x,θ) (6.2)
Lc(θ; x, z) = L(θ; x) + lnπ(z|x,θ) (6.3)

f(x|θ) =
∑
z

fc(x, z|θ) (6.4)

The EM algorithm consists in (randomly) initialising θ(0) and for t = 0, . . . , tm, repeating the
following two steps:

• Expectation. One computes the expectation value of the complete log-likelihood with respect
to the values of θ at the precedent step:

Q(θ|θ(t−1)) = 〈ln [fc(x, · |θ)]〉π(·|x,θ(t−1)) (6.5)

• Maximization. At the current iteration, the hypothesis are set to the value maximising Q:

θ(t) ≡ arg max
θ
Q(θ|θ(t−1)) (6.6)

The correctness of the algorithm can be seen by taking the expectation value of (6.3) with
respect to π,

∑
z · · ·π(z|x,θ(t−1)), hence using Gibbs inequality,8 and noticing that if ln f(x|θ)−

ln f(x,θ(t−1)) ≥ Q(θ|θ(t−1)), so that every step of the EM algorithm maximises the original
likelihood f(x|θ). There is no guarantee, however, that this algorithm converges to the absolute
maximum of f(x|θ).

6.2 Algorithms for inferring in mixtures of probability distributions
Mixtures of probability distributions. Consider n data x = {xi}ni=1 generated with a mixture
of K probability distributions, each data generated from the distribution with parameters θj with
probability pj , being

∑K
j=1 pj = 1, p = {pj}Kj=1, θ = {θj}Kj=1. The likelihood can be written as:

L(θ; x) =

n∏
i=1

 k∑
j=1

pjf(xi|θj)

 . (6.7)

8∑
i pi ln pi ≤

∑
i pi ln qi, where p and q are probability distributions, the equality is obtained if p = q.
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We will consider the simple case of a mixtures of Gaussians: N (θi, 1), i.e., f(xi|θj) = (2π)−1/2 exp(−(xi−
θj)

2/2). From now on we will consider that the hypothesis to be inferred from the data x are the
average of the distribution and the prior probability corresponding to j, θj = (µj , pj).

Although the likelihood (6.7) can be evaluated in O[Kn], there are Kn terms in the sum, so
that the direct evaluation of Bayesian estimators is not feasible. A solution is the application of
the EM algorithm.

EM algorithm for the Gaussian mixture. Let us define Z = {1, . . . ,K}⊗n. The likelihood
(6.7) can be written as:

L(θ; x) =
∑
{zi}∈Z

n∏
i=1

pzif(xi|θzi) (6.8)

according to (6.4), it is:

ln fc(x, z|θ) =

n∏
i=1

[pzif(xi|θzi)] . (6.9)

E step: the expectation value 〈lnLc(θ; x, z)〉π(z|x,θ(t)) of the EM algorithm is given by

n∑
i=1

K∑
zi=1

[ln pzi + ln f(xi|θzi)]π1(zi|xi, θzi) (6.10)

when the conditional probability of z has been factorized, π(z|x,θ) =
∏
i π1(zi|xi, θzi). We now de-

fine the shorthand: π1(j|xi, θj) = wij , i = 1, . . . , n, j = 1, . . . ,K, in terms of which the expectation
of the EM algorithm is:

〈lnLc(θ; x, z)〉π(z|x,θ(t)) =

n∑
i=1

K∑
zi=1

wij [ln pzi + ln f(xi|θzi)] (6.11)

What about the w’s? They are obtained from (6.2) and from the definition of the complete
likelihood in the mixture context, Eq. 6.9 (notice that it also responds to Bayes rule):

w1(j|xi, θj) =
p
(t−1)
j f(xi|θ(t−1)j )∑K

m=1 p
(t−1)
m f(xi|θ(t−1)m )

(6.12)

M step: maximising with respect to θj , i.e., with respect to µj and to pj results in the
equations:

p
(t+1)
j =

1

n

n∑
i=1

wij (6.13)

θ
(t+1)
j =

∑n
i=1 wijxi∑n
i=1 wij

. (6.14)

Intuitive motivation for the EM algorithm A Bayes estimator for the θ(t) given the x and
the z (M step) is feasible (since ln fc has in this case a linear (no longer Kn) number of terms)!
An estimator of π(z|x,θ) is feasible from (x,θ(t−1)) (E step, see Eq. 6.10).

Metropolis algorithm An alternative strategy is to sample θ from a Markov-Chain MC with
the Metropolis algorithm, such that the target distribution is f(x|θ). For the case of the Gaussian
mixture, the algorithm reads: one choses random initial conditions θ(0), then:

1. at the t-th iteration, one performs an attempt µ̃j = µ
(t)
j + ξ where ξ ∼ N (0, η) being η

a parameter (to be optimized). The constraint parameters p(t)j can be updated as ln p̃j =

ln p
(t−1)
j +ζ being ζ ∼ N (0, η2) (see Exercise 2), eventually evaluating this trial with a further

prior probability π(θ̃).
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Figure 6.1: Successive values of the parameters θ1,2 found by 16 realizations of the EM algorithm
(left) and of the Metropolis algorithm (right), for a mixture of 2 Gaussians, and a likelihood (rep-
resented by contour iso-likelihood lines) corresponding to n = 500, points (see the details, the
algorithm scripts and the data in /BayesianMixture/Metropolis/). The probabilities are supposed
to be known. The EM algorithm converges to each of the two maxima, depending on the initial
conditions (only the absolute maximum corresponds to (but do not coincide with) the true pa-
rameters used to generate the data, µ1 = 2.5, µ2 = 0). The Metropolis algorithm samples both
maxima in every run but, asymptotically, the absolute maxima is infinitely more sampled.

2. Application of the Metropolis rule: with probability: r = f(x|θ̃)π(θ̃)/[f(x|θ(t))π(θ(t))] ac-
cept the trial, θ(t+1) ≡ θ̃; t+ +, go to 1.

Example 8. One can implement the Metropolis algorithm for a mixture of two Gaussians (as done
in the function MetropolisThetaAndProbs() inside the script gaussianMixture.py that you can find
in the folder /BayesianMixture/Metropolis/). The Metropolis algorithm manages to find accurate
estimators for p and θ (as illustrated for a sample of n = 500 data in the mentioned folder). When
fixing the probability p1 to the true one, the EM algorithm for θ (see the function EMalgorithm(),
eventually commenting out the line searching in the p’s converges) finds alternatively the true or
the “fake” maximum of the likelihood, depending on the initial conditions, while the Metropolis
algorithm for a sufficiently large number of steps n and/or different runs with different initial
conditions, samples with arbitrarily large probability the maximum corresponding to the “true”
value of the parameters θ (see figure 6.1). Is there an optimal value of the ‘trial amplitude’ for the
changes in θ (the variable theta, in the script)?

Exercise 21. Gibbs sampling (heatbath) algorithm.
The heatbath method explained in section 3.1 can be mutatis mutandis applied to this case. We

exemplify it for a simple (with fixed variance) Gaussian mixture. The interested reader is invited
to work out the following algorithm, recovering and implementing it, eventually consulting [Marin
et al.(2005)Marin, Mengersen, and Robert]. One first choses an initial condition, θ(0). Afterwards:

1. one generates zi i = 1, . . . , n from its probability distribution:

P(zi = j) ∝ pjf(xi, θj) (6.15)

2. one computes average magnetization and average x’s: n(t)j =
∑
i δzi,j, s

(t)
j =

∑
i δzi,jxi, and

they are used to compute novel probabilities and averages:

µ
(t)
j ∼ N

(
λδ + s

(t)
j

λ+ n
(t)
j

,
1

λ+ n
(t)
j

)
(6.16)

where the prior on the choose of µj is N (δ, 1/λ), δ ∈ R, λ > 0.

Exercise 22. Reversible Jump MC (Green (1995)) When dealing with a mixture of an un-
known number of Gaussians M , it is possible to perform a Metropolis MC in which also M , besides
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p and θ, is inferred. The algorithm, called Reversible Jump MC, proposes trials between configu-
rations (p,θ) belonging to spaces EM with with different M ’s. The balance condition to be satisfied
requires the transition from one space to the other to be a bijection, and this amounts in a nontrivial
factor in the acceptance probability, depending on the Jacobian of the transformation EM → EM ′ .
The interested reader is invited to consult the details in reference [Marin and Robert(2007)] and,
eventually, to implement and test the Reversible Jump algorithm (perhaps using the machinery
already present in /BayesianMixture/Metropolis/).

7 Acknowledgements
I acknowledge Fabrizio Antenucci, Ludovica B. Romano, Francesco Di Renzo and Javier Rodríguez-
Laguna for their advices, and Cristiano Viappiani for his support as Chair of the Doctoral Studies
Committee in Physics of the University of Parma.

8 Bibliographic guide, possible completions and References
For the realization of the course, the lecture notes and the code examples, we have mainly fol-
lowed: [Pelissetto(1993b)] for the initial static MC part; [Sokal(1997)],[Pelissetto(1993b)],[Bhat and
Miller(2002)],[Janke(2008)] for the dynamic MC; [Berg(2004)] for the error estimation; [Frenkel and
Smit(2001)] for the Metropolis algorithm in different ensembles; [Pelissetto and Vicari(2002)],[Amit
and Martín-Mayor(2005)], [Chaikin and Lubensky(2000)] for the theory of finite-size scaling; [Marin
et al.(2005)Marin, Mengersen, and Robert, Marin and Robert(2007)] for the Bayesian inference
part (see also the more general references [Andrieu et al.(2003)Andrieu, De Freitas, Doucet, and
Jordan, Rubinstein and Kroese(2011)]). A useful review reference treating scaling in first-order
transitions is [Binder(1997)].

Should this course be repeated for an audience composed by physicists, one could add a section
about Quantum Monte Carlo, with the Ising spin chain [Landau and Binder(2014)] or the path
integral MC for the study of condensed Helium [Ceperley(1995)], as examples. A further possible
proposal is the presentation of the reweighting (see references in [Amit and Martín-Mayor(2005)])
and the tethered MC methods ([Martin-Mayor et al.(2011)Martin-Mayor, Seoane, and Yllanes]).
Furthermore, one could present a numerical analysis of the replica symmetry breaking transition
of a finite-dimensional spin glass model, as an illustration of the utility of the Parallel Tempering
algorithm ([Amit and Martín-Mayor(2005)]).
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